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Abstract—The reflectance r of a liquid surface for sound incident from the saturated vapour depends
upon the evaporation coefficient o, which offers a possibility of measuring this coefficient. For a
sufficiently dense vapour and for sound frequencies well below the collision frequency in the vapour,
hydrodynamic equations combined with appropriately modified boundary conditions can be applied to
analyse the effect. A strong dependence of r upon ¢ is predicted for frequencies not too small in
comparison with the reciprocal of a relaxation time, which for water at 20°C equals 1.8 x 10 %s. The
dependence is slightly uncertain and indirect, given through the intermediary of a phenomenological
jump coefficient L .

NOMENCLATURE
A,B, dimensionless amplitudes of sound waves
at x = 0;
¢, speed of sound (low-frequency limit);

specific heat at constant pressure
(per unit mass);
D, = A/pc,, thermal diffusivity ;

Js evaporating mass flux;

k, x @/c, wave number of sound wave;

K, = (T/p)dp/dT, coefficient from
Clausius—Clapeyron equation;

L,,,etc., phenomenological jump coefficients
in bulk evaporation;

M,  molecular mass;

D, equilibrium vapour pressure at
temperature T ;

q, heat of vaporization (per unit mass);

r, reflectance ;

R, molar gas constant ;

s, specific entropy;

L, time;

T, temperature (undisturbed value);

u, bulk velocity;

b, = (8RT/nM)'?, average molecular
speed ;

X, distance from surface (x > 0 within
vapour);

Z, specific acoustic admittance of surface.

Greek symbols

b, volume expansion coefficient ;
7 = ¢,/cy, ratio of specific heats;
&£p,67, relative pressure and temperature jumps;
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Ap,AT,Ap,As, excess pressure, temperature,
density, specific entropy;

0, angle of incidence ;

9, dimensionless amplitude of heat wave
atx =0;

K, x (w/2D)'"?, wave number of heat wave ;

Ay heat conductivity;

v, = (Hpui + 317)/p, longitudinal kinematic
viscosity;

0, density (equilibrium value at T);

o, evaporation coefficient ;

T, characteristic relaxation time of
liquid—vapour system;

7., = D, /c?, mean free time between
collisions of vapour molecules;

&, = Ap/p+3AT/T, jump parameter;

w, 2n x sound frequency.

Subscripts
1, vapour;
2, liquid.

1. THE EVAPORATION COEFFICIENT

IN EQUILIBRIUM between a liquid and its saturated
vapour, as long as the latter can be considered as an
ideal gas, the mass flux of molecules crossing the
boundary each way is given by the familiar
expression  4oip;, where = (8RT/nM)}? =
(8/mny,)%c, is the average molecular speed. The
evaporation coefficient ¢ specifies the fraction of
molecules incident from the vapour that merge with
the liquid, while the fraction 1 — o refers to molecules
scattered back into the vapour [1, 2]. If the incident
part of the molecular distribution remains a Maxwel-
lian at rest, yet with the corresponding pressure and
temperature modified to p+Ap; and T+AT,, the
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evaporating net mass flux is approximately given by
the Hertz-Knudsen formula,

j= _%Gﬁﬂrf, (1)
E= %l__l_mATl
C » 27

A more refined description must take into account
the scattering probability w of the incident mo-
lecules, which depends upon their velocity. Accord-
ing to detailed balance, the equilibrium average of w
equals 1—-o [2]. As practically nothing is known
about the velocity distribution after scattering, two
extreme models may be considered: (a) perfect
accommodation, i.e. the scattered molecules have a
Maxwellian distribution in equilibrium with the
surface, which implies that w is velocity independent ;
and (b), specular reflection. Reality is likely to be
closer to the first extreme.

One must keep in mind that formula (1) only
applies to a free-molecular regime under the stated
specific conditions. As was shown by several authors
and as will be explained in Section 3, under steady-
state hydrodynamic conditions the coeflicient is
roughly twice as large—a fact sometimes overlooked
in the evaluation of experiments. This coefficient is
essential in predictions of growth rates of bubbles in
a superheated liquid and of droplets in a super-
saturated vapour.

It is disappointing to learn that, because of
experimental difficulties, evaporation coefficients and
the corresponding hydrodynamic coefficients are
poorly known, especially at higher vapour pressures.
For water at ordinary temperature, the values
compiled by Cammenga et al. [3] range from 0.002
to 1. Careful measurements recently carried out by
Springer [4] gave 0.2 for a surface continuously
renewed by overflow. A five times smaller value
resulted if the surface was stagnant and therefore
presumably more contaminated. It is widely believed
that the true o is close to unity, and some
observations with liquids at lower vapour pressures
seem to support this opinion [5,6]. Further in-
vestigation appears to be needed.

Contamination should be easier to avoid in a fast
experiment, which implies a non-steady state. It is
then imperative that changes of the surface tempera-
ture can be assessed unambiguously. Measurements
of sound-wave reflection offer such a possibility.
Experiments of this kind have first been made by
Maurer [7], on the basis of an unpublished proposal
by Volmer and a theory by Becker and Déring.
However, thermal effects have been neglected in the
evaluation. A more complete analysis has been
carried out by Meinhold-Heerlein for the coupling of
sound to second sound at the surface of superfluid
helium [8]. It should also be mentioned that a
related method is being used since some time for
investigating adsorption/desorption rates. Though
only very slow oscillations (a few cycles per minute
or less) produced by moving pistons have been

applied so far, a suggestion to extend the range
towards acoustic frequencies has been made [9].

While low-frequency sound impinging from a
noncondensing gas upon the surface of a liquid or
solid is almost totally reflected, some dissipation has
been observed with ultrasound. The effect has been
explained by Herzfeld as being due to heat waves
generated at the interface [10, 11]. Enhanced dissi-
pation must be expected for sound incident from a
vapour upon its own condensed phase, because of
flow through the interface and exchange of latent
heat. The subsequent analysis is intended to derive,
under somewhat idealized conditions, the depen-
dence of the reflectance upon frequency and the
evaporation coefficient.

2. SOUND AND HEAT WAVES

In order to stay within the hydrodynamic regime
we are going to choose a sound frequency several
orders below the molecular collision frequency (r, ')
in the vapour, which for water at 20°C is about 3
x 10® Hz. A sufficient description is then given by the
changes Ap, Ap, AT, As of pressure, density,
temperature and specific entropy, and by the bulk
velocity u in both media. The normal to the surface,
pointing into the vapour, will be taken as the x axis,
with the surface at x =0. Only plane waves of
normal incidence will be considered, so that Ap
= Ap(x, t) etc.

The acoustic disturbance consists of an incident
wave, reflected wave, and transmitted wave. In
addition, we have two heat waves generated at the
interface where latent heat is periodically liberated
and absorbed. If amplitudes are small, as will be
assumed, the two kinds of waves are linearly
superposed. Their modes of propagation are de-
termined by linearized hydrodynamic equations
(heat conduction, Navier—Stokes, continuity) for a
longitudinal disturbance [ 11, 12],

AT 0As
S =pT —— 2
A ox? o’ @)
cu 1 éAp ou
H__ Lty o 3
G- o ax TV )
¢ 1 0A
s )
ox p Ct
supplemented by the linearized equations of state,
As = (¢,/T)AT - (B/p)Ap, (5)
Ap = (y/c*)Ap— BpAT. (6)

Substituting an exponential dependence upon x
and ¢, we derive both branches of the dispersion
relation and the amplitude ratios. Sound waves
propagating in the directions + x are represented by

Ap u AT p iw
» = =<1, +—5|1l—s= =D,
[ {esen|

oyl e
pe BT (1 c? D>}

x Aexp(+ikx—iwt), (7
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k ~_—5’3[1+’ﬂ(v+o')}, ®)
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where D' = (y—1)D; and the heat waves by

Ap u AT
*;:Cv T

1/2
=(~im§% (v—D), i(l—i)ﬁ?’(%)g-) , I}

x @exp[ F (1 —irx—iwt], (9)

12 .
x=(%) {1+—;%(}'—1)("—D)}~ (10)

Only first-order corrections have been incorporated
to account for sound absorption and for a related
effect in heat waves. For monatomic vapours,
smallness of these corrections is guaranteed by the
previous assumption since wv,/c? ~ wD,/c? x wr,
< 1. On the other hand, in polyatomic gases such as
water vapour, absorption can be many times
stronger because of internal {mainly vibrational)
relaxation [11-13]. Phenomenologically, this is ac-
counted for by a relatively large bulk viscosity. If
wv,/c} is not small enough, a hydrodynamic de-
scription requires the introduction of further quan-
tities, e.g. of different temperatures for the various
degrees of freedom. To avoid such difficulties we will
require that always wv,/c? < 1. Therefore, when
dealing with boundary conditions in the next
sections, the respective terms as well as those with
the factor wD,/ci [but not the one with (wD,/c?)*/?]
will be dropped from equations {(7-10).

3. HYDRODYNAMIC BOUNDARY CONDITIONS

The assumption made with equation (1) implies
that the vapour density is small (p, < p,) and allows
us to neglect the sound wave entering the liquid, as it
carries only a small fraction of the incident energy
(~ 0.002%; for water at 20°C). It will be consistent to
consider the whole liquid as well as the interface as
being at rest, in spite of the mass exchange and the
resulting bulk flow of the vapour. Hence the
evaporating mass flux is given by

J) = pyu, (0, 8). (11

Four boundary conditions connect the solutions
for the vapour to those for the liquid. The first, given
by the continuity of pressure,

Ap,=Ap, at x=0,

will not be needed, as we are not interested in Ap,.
Next, we observe that the heat of evaporation must
be supplied by heat currents from both media, thus

_GAT, . AT,
Ay = Az ax

ox
It would be wrong to take continuity of tempera-
ture and the Hertz—Knudsen formula (1) for the
remaining two boundary conditions. Because of the
resulting bulk motion of the vapour, and because of

=p,ug at x=0. (12)
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transition effects, the molecular distribution is mo-
dified. Readjustment of the distribution takes place
within the Knudsen layer, whose thickness is of the
order of one mean free path for monatomic vapours,
or correspondingly larger for polyatomic vapours
(because of internal relaxation). The layer may be
regarded as a weak stationary shock front. Only
after transversing the shock does the vapour attain
local thermodynamic equilibrium with a bulk ve-
locity u, and a unique temperature T;. If this
temperature is extrapolated down to the surface, a
discontinuity in form of a temperature jump must be
expected. Such extrapolated values already appear in
equation (12) and will be considered henceforth.

The relative deviation of vapour pressure from
saturation at the temperature T+ AT, is given by ¢,
= [Ap, — (Kp/T)AT,]/p, where K is the dimension-

less coefficient from the Clausius-Clapeyron
equation,
k=Ld _Mq
p dT ~ RT’

For small departures from equilibrium the pressure
deviation as well as the temperature jump are
linearly related to the bulk velocity and to the
temperature gradient in the vapour near x =0 [8,
14, 157. Let us state these relations as

Ap, AT, 1 4y AT,
=——-K—"=~| —L —
&y p K T ol PP“1+LPTP x .
x=0, (13)
_AT, —AT, vy, Ay 0AT,
gr=—1‘}-—_'=a ’"LpT“r*‘LTT‘E axl s
x=0, (14)

where L, etc. are the appropriate phenomenological
jump coefficients. Their normalization differs here
from Lang’s [15] by a trivial factor:

Ly, = (1/2y)2LY" etc.

The assumption that wr, < 1 and also wv,/c? < 1
is again essential. Only then is the Knudsen layer
able to follow the changes in both media quasi-
statically, so that the coefficients L,, etc. are
frequency independent.

In order to make a comparison with equation (1)
we take AT, =0 and JAT;/dx=0. Since { =5,
—3¢r. the mass flux is given by

n \!7? 1
=) e (15
plul (8}'1> Lpp—%LpT Uplé ( )

This can be considered as the hydrodynamic analog
of the Hertz-Knudsen formula (1). Except at very
low vapour pressures, steady-state observations
directly yield the coefficient in equation (15) and not
a.

All three phenomenological coefficients depend in
a subtle way upon the evaporation coefficient, as well
as upon differential scattering probabilities both for
intermolecular collisions and collisions with the
surface. A rough approximation is obtained by
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Maxwell’s method [1], which consists in extrapolat-
ing the incident distribution from the hydrodynamic
region down to the surface. If the molecules scattexed
by the surface are perfectly accommodated the
results are

n \'"*[2—0 1y,-1
L*(z“) [g *5;;“;3‘* (16)

T\, -1
Lowoms | — :1
" (2§’x) :"I"}'}

Remarkably, L,y and Ly, do not depend upon ¢ in
this approximation, which is expected to involve
errors of the order of 10%. The corresponding
coefficient in equation {15} is seen to differ from that
in the Hertz-Knudsen formula by the factor 2/(2 -0}
[16,17].

Values believed to be accurate within a few
percent follow through a variational method pre-
viously used for monoatomic vapours [15, 18]. For
the cases of perfect accommodation {a}, and of
specular reflection with velocity-independent scatter-
ing probability (b), these approximations are

143y,

n \'"3 (T2
Lﬁp:(;i;;} j +4{§+”1J+ {1— 0)\% {18a)

2+ f+3y,
o 4147 ])
2

K

1+3y, 4=0{,
T e ](1 a)} (18b)

{1n

4 DERIVATION OF THE REFLECTANCE
With neglect of terms of relative order wv,/c? and
D, /c}, the sound field in the vapour and the two
heat waves are described by the real parts of the
following expressions,

é? = (AdeTFr 4 Beti)eTi, (19)
€y 71
» 12
—{1—-1) ff’%l} O, exp[ — (1 —i)x;x]
2(:1 4 p
xe ", (20)
AT

= {@)1 expl — (1 =i, x]

(SR | . , . ;
%;i- {fig—zkgx+gerk;x}}e—zmt; {2¥¥
71

é—,—;"i» = @, exp[ (I —i)x,x]e " {22}
Substitution into the boundary conditions (12)-(14)
yields a homogeneous system of equations determin-
ing the ratios of the complex amplitudes 4, B, ®,,
Q,,

(1 —{A,x®, +4,x,8,T

1/2
"‘f‘“’ {m B}+(mm( @b, ) @1}, (23)
1 1;

(4+B)-K®,
o2
=L,p(A—B)+ (1~ i)('}'l Lyp— ;?l‘i‘— Lp'!‘)

}’1}:‘1 {A*B)«}-@i»

H

2
=L, (A—B)+(1 -«i}(y,Lﬂw»—’%—I LT,)

wD\!7
x( ,}C;> 0, (25

For any specific set of data a numerical solution of
these equations can be produced at once, and the
reflectance r = |B/AJ? derived therefrom.

We see by inspection that B, @, and @, have at
most the same order of magnitude as 4. Hence, for
not too large L,, (not too small o) a simple albeit
rough approximation follows by neglecting in equations
{23) and {24) also the terms involving @, where the
coefficients are of the order (wr,)!/?. Equation (25)
thereby becomes superfluous, as we are only in-
terested in the ratioc B/A. This means that we end up
ignoring the heat wave in the gas. Essentially the
heat wave in the liquid and the sound waves in the
vapour determine the reflectance.

To describe the final result in the familiar form
r=|B/AP ={(1-2)/(1+Z)?, (26)

we define a specific acoustic admittance of the
surface by {293

Ap ax sound,

After eliminating ©, from the simplified equations
{23} and {24), we obtain the appmximatian

A-B

A+B’

S (1—~z>( (@ an
where
. *’/’HCTY Y2026, RT?
ot TiA2Ka TN V140028 ‘
Y (mfmf( / 2piMg" @)

The parameter t infroduced here represents a
relaxation time characteristic for the liquid-vapour
system. Very roughly, 1 is inversely proportional to
the square of the saturated vapour density; for water
at 20°C it amounts to 1.8 x 107 %s. A useful obser-
vation inferred from expression (28) is that z/r . »
aslong as p, <€ p,.

At lower vapour pressure, t may well exceed the
reciprocal frequencies of applied sound. In the limit
of wt > 1, expression (27) simplifies to Z~' = L, 50
that

r=[(Lyp— 1L+ DT 2%

Apart from a different approximation for L, this is
the formula used by Maurer [7]. However, the
applied frequency was too low and the vapour
pressure too high to justify the simplification.
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By way of illustration, we substitute L,, from
equations (18a) and (18b), and the value y, = 1.33
for water. When o increases from 0 to 1, L ! is seen
to increase from 0 to 0.785 which makes r to
decrease according to equation (29) from 1 to 0.0145.
At lower frequencies the range of r slowly shrinks, as
shown by Fig. 1, and in the limit as wt — 0, the
reflectance approaches unity, regardless of the value
of L,,. This was to be expected, as the whole system
is able to adjust itself to very slow changes in a
quasistatic manner.

wT - 0041

wT 0.0}

FiG. 1. Dependence of the reflectance upon frequency and
the jump coefficient L,,, according to equations (26) and
(27). The lower and upper scales for ¢ are according to
equations (18a) and (18b), respectively, both for y, = 1.33.

At moderately low frequencies the effect is still
noticcable and allows to distinguish the extremes ¢
= 0 and ¢ = 1. However, for ¢ not sufficiently small
the sensitivity dr/éL,, falls off like (wr)*? so that
acoustic measurements soon become worthless. The
corresponding flat portions of the curves on Fig. 1
hardly depend upon L,, and can be approximated
by r & 1 —4{w1)''2

For water at 100°C and with a frequency of
3.5kHz Maurer obtained a reflectance below 0.4,
which is much less than the value predicted by
equations (26), (27). Damping due to water adsorbed
on the wall of the experimental tube could perhaps
explain the discrepancy. :

The analysis is easily generalized to oblique
incidence. Except for grazing angles the result is [19]

r = H{cos 8—Z)/(cos 8+ Z)*. 30)
At a certain angle of incidence, r is seen to reach a

minimum, which in the high-frequency limit is r = 0

at § = arccos(1/L,,).
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For very small o, when L,, becomes large, the
derivation of equation (27) becomes inaccurate.
Since in this case ®, » 4—B and ©, > ©,, one
must retain some of the terms involving ®,. If bulky
expressions are to be avoided, the best is to extract a
rough approximation for ®, from the previously
omitted equation (25),

6, = —[1~V/y;](4+B),
and to substitute this into equations (23) and (24).
The resulting admittance is
1 hum,

20 ;
Z =Lyl —-K—— — 4+ (1—1)
0{ 71 Ak (

D 1/2
x(%c—%l) [(’/1"‘1)251“?1['”]}5 (31)

where Z,, stands for the value from equation (27). In
the limit as ¢ - 0, L, = o0, Z, — 0, the result agrees
with the one calculated by Herzfeld [10] simply from
the boundary condition u, = 0 at x = 0:

Z = (1=i)(y; — (wD,/2¢})'?
rx~ 1—4Re(Z).

5. COMMENTS

As was shown, heat and mass exchange at the
vapour—liquid interface can strongly influence the
reflection of sound. If this is to be exploited for
measurements of the phenomenological jump coeffi-
cient L, frequencies are needed such that w1t is not
too small, yet at the same time wr, <1 and also
wv,/c? < 1. Hence the ratio v,/c;t must be small, say
<01, which for polyatomic vapours imposes a
severe restriction upon permissible vapour pressures.
It appears doubtful whether with water vapour, which
exhibits strong relaxation [12], the method could be
applied much beyond 50°C where p = 0.12 bar.

The values of L,, and L, are all we need to
predict evaporation and condensation rates under
near-equilibrium hydrodynamic conditions. How-
ever, the quantity representing a genuine surface
property is ¢, which has to be derived from the
measured L,,. An error of the order 0.1(1—g), as
inferred by comparing equations {18a) and (18b), is
inevitable in this derivation as long as the distri-
bution of scattered molecules remains unknown.

Hydrodynamic boundary conditions cannot be
used at very low pressures, such as found with non-
volatile liquids. There the mean free path in the
vapour may become longer than applicable wave-
lengths of sound, or even comparable to the
dimensions of the apparatus. For such a regime the
analysis would be tedious, and could hardly produce
unambiguous results, Only in the extreme case of a
collisionless gas is the situation simple again [20].
One expects the reflectance in this case to be
proportional to 1—g, though an uncertainty of
several tens of per cent is involved because of the
unknown surface-scattering law. Perhaps the equip-
ment developed by Greenspan and others [21-23]
for acoustic studies of rarefied gases could be used
under such circumstances.

(32)
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INFLUENCE DE L'EVAPORATION ET DE LA CONDENSATION SUR LA REFLEXION DU
SON

Résumé— Le pouvoir réfléchissant r d’une surface liquide vis-a-vis du son incident dans la vapeur saturée
deépend du coefficient d’évaporation g, ce qui offre une méthode pour mesurer ce coefficient. A une densité
de vapeur suffisante et pour des fréquences sonores faibles par rapport a la fréquence de collision dans la
vapeur, on peut analyser I'effet par les équations hydrodynamiques associées a des conditions aux limites
modifiées de fagon appropriée. Pour des fréquences pas trop faibles en comparaison avec I'inverse d’un
temps de relaxation (égal a 1,8-107%s pour I'eau a 20°C), on prévoit une forte dépendance de r vis-a-vis
de ¢. La dépendance donnée au moyen d’un coefficient phénomeénologique de saut L, est un peu
incertaine et indirecte.

EINFLUSS VON VERDAMPFUNG UND KONDENSATION AUF SCHALLREFLEXION

Zusammenfassung—Das Reflexionsvermégen r einer Flussigkeitsoberfliche gegeniiber Schall, der aus
dem gesittigten Dampf auftrifft, hingt vom Verdampfungskoeffizienten ¢ ab und bictet somit eine
Moglichkeit zur Messung dieses Koeffizienten. Fur geniigend hohe Dampfdichten und fiir Schallfrequen-
zen, die klein gegen die StoBfrequenz im Dampf sind, kénnen zur Analyse des Effekts hydrodynamische
Gleichungen mit entsprechend modifizierten Randbedingungen verwendet werden. Eine starke
Abhiangigkeit der GroBe r von o wird fur Frequenzen, die nicht zu klein sind verglichen mit dem Kehrwert
einer Relaxationszeit, vorausgesagt. Hierbei erhdlt man fiir Wasser von 20°C eine Relaxationszeit von 1.8
x 1075, Die Abhingigkeit des r von ¢ ist mit einer UngewiBheit behaftet und indirekt, iiber einen
phidnomenologischen Sprungkoeffizienten L, gegeben.



Influence of evaporation and condensation upon sound reflection

BJIUAHHUE UCNMAPEHHUA U KOHAEHCALIMM HA OTPAXEHHUE 3BYKA

Annotaums — OTpaxaTebHas cnocOGHOCTL r MOBEPXHOCTH pasliena XHAKOCTb — HACHILIEHHbIA nap
NpH NaJeHHEH Ha Heé 3BYKOBOM BOJIHBI 3aBHCHT OT KOXpOHMUHMEHTZ HMCNapeHHs XHAKOCTH o, 4TO
No3BOJIAET H3MEPATb 3TOT KodbdHUMeHT. [I18 [JOCTAaTOMHO NJAOTHOTO mnapa H 4YacTOThl 3BYKa,
HAMHOTO MeEHbIUEH YacTOTHl COYNAPEHHs YacTHL B Nape, NMPH aHalM3e 3ITOTO ABJICHHA MOXHO
HCNONb30BaTh THAPOAMHAMHMHYECKHE YDABHEHHS C COOTBETCTBYIOLIMMH TIPAaHHYHBIMH YCIOBHSIMH.
IMpenckazaHa CHIbHAas 3aBHCHMOCTb r OT 0 NPH 4acTOTaX, BEJIHYHHA KOTOPbIX HE CJHMIIKOM Maja
110 CpPaBHEHHMIO C BeJMYMHOM, 0OBpaTHOM BpeMeHH penakcaumy, coctasnsiomed 1,8 x 107 cex aas
Boabl npH 20°C. DTa 3aBUCHMOCTb ONpPEJEIAETCA C MOMOWLI0 (PeHOMeHOoNOrnYeckoro kodddpu-
uMenTa L,,.
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